

KEVLAR: TRANSITIONING HELIX FROM RESEARCH TO
PRACTICE

UNIVERSITY OF VIRGINIA

APRIL 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-074

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-074 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
ROBERT J. VAETH II WARREN H. DEBANY, JR
Work Unit Manager Technical Advisor, Information
 Exploitation and Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2013 – NOV 2014
4. TITLE AND SUBTITLE

KEVLAR: TRANSITIONING HELIX FROM RESEARCH TO
PRACTICE

5a. CONTRACT NUMBER
FA8750-13-2-0096

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)
Jack W. Davidson, John C. Knight, Michele Co, Jason D. Hiser,
Anh Nguyen-Tuong

5d. PROJECT NUMBER
KEVL

5e. TASK NUMBER
AR

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science
University of Virginia
Charlottesville, VA 22904

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-074
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Security weaknesses in DoD information systems remain a major challenge for system stakeholders. We have
advanced technology transition for technology developed under the Helix and PEASOUP projects to protect Air Force
systems of interests. The result is an asset that, if widely deployed by the DoD, would enable a high level of confidence
in the security of DoD systems, in particular, confidence that certain classes of critical vulnerabilities were no longer
subject to possible exploitation. Our technology, called Kevlar, includes key security technologies are protective
transformations and targeted recovery. The protective transformations are applied to application binaries before they are
deployed. Salient features of Kevlar include applying high-entropy randomization techniques, automated program
repairs, leveraging highly optimized virtual machine technology, and developing a novel framework for program analysis,
transformation and composition.

15. SUBJECT TERMS

KEVLAR, cyber security, binary, lightweight protection, backwards compatibility

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ROBERT J. VAETH II

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

33

 i

TABLE OF CONTENTS

1.0 SUMMARY .. 1

2.0 INTRODUCTION .. 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 2

3.1 Helix .. 2

3.2 Kevlar Architecture ... 4

3.2.1 Intermediate Representation Database (IRDB) .. 5

3.2.2 Static Analysis for Reliability and Security (STARS) .. 6

3.2.3 Sprocket Execution Engine ... 7

3.3 Kevlar Protections ... 9

3.3.1 Instruction Location Transformation (ILX) .. 9

3.3.2 Stack Layout Transformation (SLX) .. 11

3.3.3 Heap Randomization and Transformation (HLX) .. 12

3.3.4 Instruction Set Randomization .. 13

3.3.5 PC Confinement (PCC)... 14

3.4 Technology Communication ... 15

4.0 RESULTS AND DISCUSSION ... 15

4.1 Period 1 – Feb. 2013 to May 2013 .. 15

4.1.1 Progress Against Planned Objectives ... 15

4.1.2 Technical Accomplishments this Period ... 16

4.1.3 Improvements to Prototypes This Period .. 16

4.2 Period 2 – May 2013 to Aug. 2013 ... 16

4.2.1 Progress Against Planned Objectives ... 16

4.2.2 Technical Accomplishments this Period ... 16

4.2.3 Improvements to Prototypes This Period .. 17

 ii

4.3 Period 3 – Aug. 2013 to Nov. 2013 .. 17

4.3.1 Progress Against Planned Objectives ... 17

4.3.2 Technical Accomplishments this Period ... 17

4.3.3 Improvements to Prototypes This Period .. 17

4.4 Period 4 – Nov. 2013 to Feb. 2014 ... 18

4.4.1 Progress Against Planned Objectives ... 18

4.4.2 Technical Accomplishments this Period ... 18

4.4.3 Improvements to Prototypes This Period .. 19

4.5 Period 5 – Feb. 2014 to May 2014 .. 19

4.5.1 Progress Against Planned Objectives ... 19

4.5.2 Technical Accomplishments this Period ... 19

4.5.3 Improvements to Prototypes This Period .. 20

4.6 Period 6 – May 2014 to Aug. 2014 ... 21

4.6.1 Progress Against Planned Objectives ... 21

4.6.2 Technical Accomplishments this Period ... 21

4.6.3 Improvements to Prototypes This Period .. 21

4.7 Period 7 – Aug. 2014 to Nov. 2014 .. 22

4.7.1 Progress Against Planned Objectives ... 22

4.7.2 Technical Accomplishments this Period ... 22

4.7.3 Improvements to Prototypes This Period .. 22

4.8 Results Discussion .. 23

5.0 CONCLUSIONS... 23

6.0 REFERENCES ... 24

6.1 List of Acronyms .. 26

 iii

LIST OF FIGURES

Figure 1: High-level conceptual overview of the Helix architecture .. 3

Figure 2: Kevlar Architecture: Offline generation of Sprocket programs 5

Figure 3: Kevlar Architecture Online Selection of Sprocket program ... 5

Figure 4: Sprocket rewrite rule to change stack frame allocation. For exposition purposes, all

instructions are one-byte long. .. 7

Figure 5: ILX code example ... 10

Figure 6: ILX Static Analysis ... 10

 iv

LIST OF TABLES

Table 1: Example without and with HLX, respectively ... 13

Table 2: Example of arc-injection attack .. 14

 1

Kevlar: Transitioning Helix from Research to Practice

1.0 SUMMARY

Security weaknesses in DoD information systems remain a major challenge for system

stakeholders. We have advanced the transition of technology developed under the Helix and

PEASOUP projects to protect Air Force systems of interests. The result are expected to be an

asset that, if widely deployed by the DoD, would enable a high level of confidence in the

security of DoD systems, in particular, confidence that certain classes of critical vulnerabilities

were no longer subject to possible exploitation.

Weaknesses in software code (such as memory overwriting errors, fixed-width integer

computation errors, input validation oversights, and format string vulnerabilities) remain

common. Via these weaknesses, attackers are able to hijack an application’s intended control

flow to violate security policies (exfiltrating secret data, allowing remote access, bypassing

authentication, or eliminating services). To mitigate and defend against attacks that seek to

exploit such weaknesses, we have developed the Helix architecture. Helix represents the

culmination of over 10 years of R&D with support from Defense Advanced Research Projects

Agency (DARPA), the National Science Foundation (NSF), the Army and the Air Force, and

ongoing support from the Intelligence Advanced Research Projects Agency (IARPA).

We have leveraged the opportunity to take the Helix architecture one step closer to

deployment in real systems by developing Kevlar, a completely automatic system for securing

applications against attack by well-funded, determined malicious adversaries. Kevlar armors

binary programs and protects them from attacks, which could arise from the inevitable

vulnerabilities that remain after deployment. The source code is not required nor are any other

development artifacts. These features make Kevlar of particular value for software systems that

have to be used but for which no development information is available.

The key security technologies used by Kevlar are protective transformations and targeted

recovery. The protective transformations are applied to application binaries before they are

deployed. Conceptually, these transformations are tailor-made, lightweight “armor” that prevent

an attacker from exploiting residual vulnerabilities in a wide variety of classes. Kevlar uses novel,

fine-grained, high-entropy diversification transformations to prevent an attacker from

successfully exploiting vulnerabilities. To prevent attacks from causing the system to act in

undesirable ways, such as crashing or performing unintended actions, Kevlar also provides

custom-made, application-specific remediation strategies that may be invoked in the event of an

attack.

Kevlar is implemented using dynamic binary transformation. Diversification is applied to

the subject binary program prior to deployment. When in use, dynamic binary translation ensures

that the functionality of the software as seen by the user is identical to the original program. The

mechanism of dynamic binary translation is heavily protected against direct attacks. Kevlar has

several major strengths: (a) it is applied to binaries and does not depend on particular languages,

compilers, or libraries, (b) it is complementary to other security techniques including inspection,

static analysis and testing, (c) it requires no changes to the software development process, and

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 2

(d) preliminary performance measurements show that the armoring provided by Kevlar is

lightweight incurring modest run-time performance overhead of around 10%.

Salient features of Kevlar include applying high-entropy randomization techniques, automated

program repairs, leveraging highly-optimized virtual machine technology, and in general,

developing a novel framework for program analysis, transformation and composition.

2.0 INTRODUCTION

Security weaknesses in DoD information systems remain a major challenge for system

stakeholders. To mitigate and defend against attacks that seek to exploit such weaknesses, we

have developed the Helix architecture. Helix represents the culmination of over 10 years of

Research and Development (with support from DARPA, the National Science Foundation, the

Army and the Air Force, and ongoing support via IARPA’s Stonesoup Program). Salient features

of Helix include developing high-entropy randomization techniques, automated program repairs,

leveraging highly-optimized virtual machine technology, and in general, developing a novel

framework for program analysis, transformation and composition. We propose to transition

technology developed under the Helix and PEASOUP projects to protect Air Force systems of

interests. We expect the result to be an asset that, if widely deployed by the DoD, would enable a

high level of confidence in the security of DoD systems, in particular, confidence that certain

classes of critical vulnerabilities were no longer subject to possible exploitation.

The next two sections describe the Helix architecture and our plans to transition this

technology so that it can be used to protect current and future Air Force systems. The major

component of this effort is to develop Kevlar, a robust easy to use tool for applying the Helix

technology to real systems.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Helix

A fundamental problem with current defenses is that they do not redress the asymmetry between

attackers and defenders, changing the target system only slowly and reactively in response to

attacks. Even approaches that incorporate intrusion detection and tolerance have proven

ineffective against determined and well-funded attackers who have at their disposal a growing

arsenal of evasive, stealthy, adaptive, polymorphic and metamorphic attacks. To cope with such

sophisticated attacks, the Helix architecture uses a combination of defense mechanisms that is

both highly effective and metamorphic, i.e., a high-entropy metamorphic shield, that presents

attackers with a continuously changing attack surface.

Figure 1 provides a high-level conceptual overview of the Helix architecture. An application

running in Helix is treated in a holistic way, with information being shared across development,

deployment, execution, and response phases in ways that are not possible with traditional

architectures.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 4

• The concept of analyzing and storing meta information regarding software in the

Application Information Repository is key to enabling various security transformations.

• Helix incorporates several novel high-entropy randomization techniques.

• Helix significantly advanced the use of fast dynamic binary rewriting techniques for

armoring binaries without requiring the availability of source code.

• Helix leverages the Strata virtual machine technology for transparently augmenting

binaries with self-sensing, self-diversification, self-protection and self-repair capabilities.

Overall, Helix provides the intellectual framework for quickly developing and fielding new

security transformations. The next section describes how Kevlar's protections exploit Helix-

developed capabilities in order to begin an effective transition from research to practice.

3.2 Kevlar Architecture

Kevlar is a completely automatic system for securing applications against attack by well-funded,

determined malicious adversaries. It armors binary programs and protects them from attacks

which could arise from the inevitable vulnerabilities that remain after deployment. The source

code is not required nor are any other development artifacts (such as object files, debugging

information, linker maps, etc.) Enabling the rapid development of security transformations and

enabling their safe composition are hallmarks of the Kevlar. Kevlar consists of two phases: (1)

an offline phase in which Kevlar provides deep analyses on binaries and records results in an

intermediate representation database (called the IRDB). Kevlar then uses the database to

generate and vet sprockets, i.e. specifications for security transformations; and (2), an online

phase in which these sprocket specifications are dynamically applied using Strata, a state-of-the-

art dynamic binary rewriter [19, 24].

Figure 2 shows the high-level architecture of the off-line or redeployment portion of Kevlar.

Kevlar consists of a static analyzer, called STARS [7], that disassembles x86 binaries, performs

extensive static analysis of the binary, and then stores the results of the analysis along with the

binary persistent in the IRDB. The IRDB is the repository for all information known or

determined about a binary and is the realization of the Application Information Repository

described in Section 3.1.

A Kevlar analysis and transformation phase uses information in the IRDB to create new

versions of a binary, called variants, where various armoring transformations and remediation

policies have been applied. A novel aspect of Kevlar is that, rather than statically rewrite the

binary, Kevlar produces programs, called Sprockets, that are used by the software dynamic

translation system to transform the original binary into the corresponding variant at run time.

To ensure that the variants produced by Kevlar run appropriately, they are then “vetted” by a

tool called BED (Behavior Equivalence Detection) and TSET (Test Suite Evaluation

Technology). BED runs each variant using a regression test suite to ensure that the variant

produces the same output as the original binary while TSET seeks to measure our confidence

levels in the results reported by BED. In addition, BED uses a fault injector to inject faults into

the application to determine the effectiveness of the remediation policies generated by Kevlar.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 6

The IRDB is similar to the IR for a traditional compiler and the realization of Helix’s AIR. It

contains information about the program, such as the instructions that make up the program, their

addresses, their control and data flow, etc. Furthermore, it contains information about each

function including the stack layout, entry points, exit points, etc., the global data layout of the

program, targets of indirect branches, etc. Program information is added to the IRDB by various

tools including a binary static analyzer called STARS that is discussed in the next section

(Section).

Unlike a traditional IR for a compiler, the IR in the database is not guaranteed to be 100%

accurate. We realistically assume that information such as perfectly accurate disassembly of the

program is not available. We make this assumption to facilitate binary analysis and

transformation where such information is rarely available. Issues of imperfect analysis can be

compounded if different analyses disagree on information. For example, we use both STARS

and the Linux utility objdump to populate the list of instructions in the IRDB. The two tools

typically agree on instruction start addresses, but occasionally they disagree. The IRDB

facilitates the use of conflicting information by supporting conflicting information with a

confidence metric.

Another key feature of the IRDB is the ability to “clone” a program. A cloned program is

identical to the program it was cloned from, except with a new name, and extra information to

track the creation of clones. The primary purpose of a clone is to facilitate programmatic

experimentation. For example, suppose that we wish to determine which remediation technique

would be effective for a given program. We might choose to clone the program, then instrument

the program with the remediation technique for testing.

The clone feature has one other primary purpose: namely we need a “before” and “after”

version of the program to support automatic generation of the Sprockets needed to execute the

modified program. By tracing a cloned program’s hierarchy back to the untransformed program,

we can successfully generate Sprockets to represent the changes between the original program

and the transformed program. By examining these differences, automatic generation of the

Sprockets is fast, efficient and reliable.

Kevlar’s IRDB is implemented using PostgreSQL. Measurements show that it is fast and

efficient.

3.2.2 Static Analysis for Reliability and Security (STARS)

A key component of Kevlar is STARS (STatic Analyzer for Reliability and Security). It was

developed to determine certain security properties of a program in binary form [7]. STARS is

implemented as a plug-in to the popular IDA Pro disassembler [6]. The static analyzer currently

operates on Linux/x86 binaries, although it can be targeted to any platform that is targeted by

IDA Pro. Currently, IDA Pro targets more than 40 processors and operating platforms.

A key function of STARS in Kevlar is the identification of the instructions of the application.

As discussed by Debray and Andrews, precisely disassembling a binary is, in general, not a

solvable problem [18]. In practice, STARS rarely misidentifies data as code. As noted by Debray

and Andrews, such misidentifications would be disastrous for a static code rewriter. Because

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 7

Kevlar uses software dynamic translation to transform code, Kevlar is able to tolerate any

inaccuracies—we will never rewrite data as code as the rewrite process occurs during the

fetch/execute/translate phase of the dynamic translator. That is, only code that should be

executed is processed.

The static analyzer analyzes the control flow and data flow of the entire program binary. The

analyzer builds a fully pruned SSA (Static Single Assignment) form representation of the

program and performs numerous data flow analyses on this representation [3, 23]. The data flow

analyses include a simplified type system, in which registers and stack locations are typed as

being data pointers, integers, floating-point values, strings, or code pointers.

All information determined by STARS is recorded in the IRDB. Later analysis and

transformation phases of Kevlar use this information. During these phases, as additional or more

accurate information becomes known, information in the IRDB is updated.

3.2.3 Sprocket Execution Engine

In Kevlar, transformations to the binary are applied dynamically. This approach has several

advantages. As mentioned previously, it permits Kevlar to deal with the inaccuracies inherent in

the static analysis of binaries. It also permits a single binary to be deployed with transformations

applied dynamically to create an ever-changing attack surface—the metamorphic shield. The

dynamic rewrites to be applied are specified by sprocket programs rewritten using the Sprocket

Program Rewriting Interface (SPRI).

Figure 4: Sprocket rewrite rule to change stack frame allocation. For exposition purposes,

all instructions are one-byte long.

SPRI and Sprocket Generation SPRI defines simple rewriting rules that come in two

forms. The first form, the redirect form, transfers control to a specified target address (lines 1 and

3 in Figure 4). The second form, the instruction definition form, indicates that there is an

instruction at a particular location (line 2). The net effect of applying the SPRI rules shown in

Figure 4 is to rewrite the instruction sub esp,20 instruction at address 0x8000 to be

sub esp,40. The stack layout transformation (described later) uses such rules to transform

stack frame allocations.

Together these two types of rules provide the foundation for building a wide range of

Sprocket programs. The example shown illustrates the equivalent of a small patch that modifies

Original Program Fragment:

(a) 0x8000 sub esp,20

Rewrite rule:

(1) 0x8000 -> 0xFF00

(2) 0xFFF0 ** sub esp,40

(3) 0xFF01 -> 0x8001

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 8

only 1 instruction. At the other end of the scale, transformations such as ILX (instruction

location transformation, described later) seek to rewrite all instructions in a binary.

Despite its conceptual simplicity, manually writing Sprockets in SPRI would be a tedious

and error-prone process. Instead, Sprocket developers apply their transformations using a high-

level C/C++ API to manage the creation and deletion of program variants, and to manipulate

program state, e.g. to insert, delete, or replace instructions and re-route control flow. The API

transparently interacts with the IRDB to commit any changes.

With this architecture, the composition of Sprockets is naturally performed by chaining

together transformations: one Sprocket encodes its transformation in the IRDB, the next

Sprocket then takes as input the new database state, and then effect its own transformations.

Kevlar then automatically generates SPRI rules for any program variants by essentially

performing a “smart diff” between the IRDB representation of a variant against the IRDB

representation of the original binary.

Strata. Once the SPRI rules are generated, Kevlar uses software dynamic translation (SDT)

techniques to efficiently execute Sprockets (Figure 4). While we use Strata as our underlying

SDT infrastructure, we note that sprockets could be similarly implemented via any SDT tool [2,

12, 14, 19, 20, 22].

Strata dynamically loads an application and mediates application execution by examining

and translating an application’s instructions before they execute on the host CPU. Strata operates

as a co-routine with the application that it is protecting. Translated application instructions are

held in a managed cache called a fragment cache. Strata is first entered by capturing and saving

the application context (e.g., program counter (PC), condition codes, registers, etc.) Following

context capture, Strata processes the next application instruction. If a translation for this

instruction has been previously cached, Strata transfers control to the cached translated

instructions.

If there is no cached translation for the next application instruction, Strata allocates storage

in the fragment cache for a new fragment of translated instructions. Strata then populates the

fragment by fetching, decoding, and translating application instructions one-by-one until an end-

of-fragment condition is met (e.g., an indirect branch). As the application executes under Strata’s

control, more and more of the applicationâ€™s working set of instructions materialize in the

fragment cache.

Implementation of Sprockets requires several simple extensions to a typical software

dynamic translator. First, we must modify Strata startup code to read the SPRI rewrite rules (not

pictured). Next, Strata’s instruction fetching mechanism is overridden to first check, then read

from SPRI rewrite rules as appropriate. Lastly, the next-PC operation is modified to obey any

redirection rules that are specified.

Finally, we must take steps to protect Strata itself. To thwart a compromised application

from overwriting Strata’s own code or data, we use standard hardware memory protection

mechanisms. When executing the untrusted application code, Strata turns off read, write, and

execute permission on the pages of memory it uses, leaving only execute (but not write)

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 9

permission on the code cache. Strata also watches for attempts by the application to change these

permissions. Previous work has shown this technique to be effective and cost very little [10].

3.3 Kevlar Protections

The Kevlar toolchain is flexible and powerful. It can dynamically apply a wide range of diversity

transformations on a running binary, it can check and enforce various program properties that

have been extracted from the binary or specified by an administrator, and it can insert

remediation code. The following sections describe some of the Kevlar.

3.3.1 Instruction Location Transformation (ILX)

A powerful diversity technique is to randomize the location of code so an attacker has difficulty

precisely locating targets of attack (e.g., entry point to functions, tables of pointers to functions,

etc.). For example, most systems now routinely use Address Space Layout Randomization

(ASLR) to make exploiting weaknesses difficult [25]. ASLR has several positive attributes. It is

cheap to apply incurring little or no run-time overhead, and it can It can be applied to any binary,

It is applied automatically—no user intervention or action is necessary.

Unfortunately, ASLR implementations have low entropy. ASLR on a 32-bit architecture

only provides 16 bits of entropy. Furthermore, ASLR is not applied universally throughout the

address space. Even when using dynamically-linked libraries, it is common for the main program

text to start at a known fixed location. Because of these limitations, ASLR-protected code is

subject to attack [4, 7, 21].

Instruction Location Transformation (ILX) is a technique that seeks to scatter instructions in

a program randomly throughout the address space. In contrast to ASLR, ILX provides 31 bits of

entropy on a 32-bit machine. Furthermore, ILX is applied universally to all segments. Thus, the

major limitations of ASLR are eliminated.

 Figure 5 conceptually illustrates ILX. The top left of the figure shows the control-flow

graph of a particular program segment. The compiler and the linker collaborate to produce an

executable file where instructions are laid out so they can be loaded into memory when the

program is executed. A typical layout of code is shown at the bottom left of the figure. The right

side of the figure shows the layout of the code when ILX is applied.

To link instructions together, an ILX sprocket contains a fallthrough map shown at the top

right of Figure 5. This map uses SPRI to specify the execution successor of each instruction in

the program.

Together, we call the fallthrough map and randomized instruction locations an ILX sprocket.

Figure 6 shows how an ILX program could be created. First, STARS detects the instructions and

functions in a program. Next, the program is analyzed for indirect branch targets, call sites,

branches, etc. Finally, the reassembly engine uses this information to relocate the entire program

with each instruction in a randomized location, and creates the fallthrough map.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 11

preliminary prototype achieved only 13% runtime overhead on the SPEC2006 benchmark suite.

Furthermore, randomly scattering instructions throughout the address space significantly reduces

the attack surface for mounting any arc-injection attacks, including attacks based on return-

oriented programming techniques. Hiser et al. provides a more complete discussion of the

benefits of ILX and full details of its implementation [8].

3.3.2 Stack Layout Transformation (SLX)

A common target of malicious attacks are locations on the stack (e.g., return addresses, frame

pointers, function pointers, and critical data). SLX is a transformation that is applied to a running

application to dynamically randomize the location of variables on the stack and place canaries to

determine if an attack has been attempted.

Transformation of the stack frame layout for a function requires determination of:

1. The current layout of the stack frame, e.g. the addresses and sizes of various stack data

objects (incoming arguments, saved registers, return address, local variables, outgoing

arguments)

2. The instructions that generate an address of a data objects on the run-time stack.

In principle, if this information were available, the layout of the stack frame could be

changed and the instructions that generate stack addresses modified to reflect the new layout.

The new layout of the stack frame could be based on any security-relevant criteria, e.g., memory

objects could be placed in random order, padding introduced before, after or within the stack,

canaries included, variables promoted to the heap, etc. While this information is readily available

to the compiler when given a program in source code form, Kevlar must recover this information

solely based on the binary representation.

In our approach, static analysis (STARS) is used to determine all the necessary details of the

binary program. However, when starting with a binary program, precise determination of the

stack layout and the instructions that generate stack addresses for any given function is

problematic (indeed, even the very basic notion of a function is problematic at the binary level).

Modern compilers employ a wide range of techniques to minimize both the use of storage and

program execution time. The result is binary programs with unpredictable structures.

Our approach to determination of the stack layout and the instructions that reference the

stack is based on two assumptions about addressing: (a) the predominant mechanism by which

instructions access stack variables is through scaled or direct addressing based on an offset

indicating the variable starting location, and (b) where indirect addressing is used, that use is for

access to variables whose locations can be inferred from previous direct or scaled addressing.

Starting with these assumptions, layout inferences are produced using a set of simple heuristics

that rely upon additional assumptions concerning: (c) the manner in which the stack is allocated

and deallocated, and (d) the general stack frame layout.

The assumptions listed above do not necessarily hold (although assumptions (c) and (d) hold

for binaries produced by C/C++ compilers that use the cdecl x86 calling convention). Indeed

through BED and TSET, the Kevlar toolchain explicitly compensates for any transformations

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 12

that might rely on erroneous information. Our approach to stack layout transformation is

speculative. Initial inferences about the stack are created, and these inferences are then evaluated

and refined if necessary to ensure that they preserve the program’s semantics.

In our current approach, we limit transformations to placement of memory objects in

random order and the introduction of random length padding. Vetting of these transformations is

by testing with BED and TSET. Furthermore, we use diversity as an error amplification

technique to detect bad stack layout inferences. The basic idea behind error amplification is as

follows: if a hypothesized stack layout inference is correct, then any semantic-preserving

transformations should result in a correct program variant. We can therefore develop a multitude

of such transformations, e.g., permutation of the order of variables, and vet each of the variants.

If any of them fail, and assuming that our transformation is correctly implemented, we can then

not only reject the variant but also the inferred stack layout. Note that this process is the exact

opposite of validating transformations by using testing to validate optimizing compiler

transformations.

For each detected function in a binary, SLX randomizes the stack layout using an aggressive

inference to reorder variables, e.g. using offsets in the disassembly of the program to infer

variables. If the tests are passed, we use error amplification before creating the final variant. The

layout is randomized a second time and the resulting program tested again. If the tests are passed

following the second randomization, a third randomization is effected that reorders the stack

elements and places padding between stack objects. If the tests are passed with this

randomization, then the transformation is assumed to be satisfactory, and the analysis continues

with the next function.

If one or more tests fail during analysis of a function, the inference about the stack layout is

abandoned, and a simpler, less aggressive inference is used. The least aggressive inference

besides not changing the function at all is one in which the entire stack frame is relocated but the

order of variables is left unchanged. Preliminary work suggests that reordering variables is an

effective error amplification technique as reordering misidentified variables will most likely

result in a program crash. Thus, three rounds of error amplification appears sufficient to vet SLX

transformations.

Our current approach has been evaluated on a variety of benchmarks, and the results are

promising [16]. The use of BED and TSET resulted in binaries whose functions were

transformed with different levels of aggressiveness, ranging from no transforms, to transforms

that reordered a subset of the local variables, and in some cases, we were able to infer and

reorder all local variables on the stack frame. The ability to reorder stack variables for security

purposes is standard in some compilers, e.g., the ProPolice extension to gcc reorders buffers

higher in memory than other variables to prevent local overflows [5]. Our results demonstrate

that we can enable similar transformations but using only binaries.

3.3.3 Heap Randomization and Transformation (HLX)

Kevlar’s Heap Layout Transformation (HLX) provides protection against a variety of common

memory errors, such as buffer-overflows, use-after-free, and double-free errors. It achieves these

protections by detecting (using STARS analysis) memory allocations within the program and

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 13

rewriting the allocations to randomly increase the allocation size. HLX also detects memory

deallocation sites and maintains a pool of objects that were marked as free. When additional

memory is needed (such as the free object pool has become too large), the free pool is checked

and objects are randomly selected for deallocation.

Table 1: Example without and with HLX, respectively

int size = strlen(input);

char* newValue =

malloc(size+1);

strcpy(newValue,input); \par

sprintf(newValue, "%s!\n",

input);

log("The input is %s",

newValue);

free(newValue);

int size = strlen(input);

cleanup_free_pool();

char* newValue =

malloc(random_increase(size+1

));

strcpy(newValue,input);

sprintf(newValue, "%s!\n",

input);

log("The input is %s",

newValue);

add_to_free_pool(newValue);

Table 1 provides an example. The left portion shows unprotected source code that allocates

a buffer, and uses that buffer to manipulate input. Unfortunately, the code has a off-by-one error,

and allocates too few bytes to hold the newly formed string, perhaps because additional

characters were were added to the manipulation, but the size of the buffer was not updated. The

right side of the figure shows how HLX would transform the program. The amount of memory

allocated gets increased by a random amount, and free pool management code is inserted. In this

case, the off-by-one error is converted from a possibly crash-inducing bug, into a fully-correct

program. While not all programs can be completely repaired, the transform still prevents exploits

because an attacker cannot reliably predict where heap items may be located, or what size a

buffer might be to predictably overrun the buffer.

Unlike the example, however, HLX provides high-entropy randomization on a binary

program where no source code is available, like the rest of Kevlar.

3.3.4 Instruction Set Randomization

A common and very dangerous form of security attack involves exploiting a vulnerability to

inject malicious code into an executing application and then cause the injected code to be

executed. A theoretically-strong approach to defending against any type of code-injection attack

(irrespective of the vulnerability) is to create and use a process-specific instruction set that is

created by a randomization algorithm. Code injected by an attacker who does not know the

randomization key will be invalid for the randomized processor effectively thwarting the attack.

Kevlar takes advantage of ISR to help defeat these kinds of attacks. ISR uses Kevlar’s static

analysis and runtime support to identify code locations, and encrypt them during a process’

loadeding procedure. Kevlar versions of ISR is based on the first practical version of ISR [9].

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 14

Kevlar further extents this technology to monitor the application for dynamically loaded code

(shared objects or .dll’s) and encrypts that code as it enters the runtime system.

Kevlar’s code-injection security can be further enhanced by configuring it as a metamorphic

shield [13]. The metamorphic shield (MMS) technology not only randomizes the code at

program startup, but periodically rerandomizes the code’s encryption characteristics as the

program is running. Such randomization prevents attackers from exhaustively searching for the

encryption key, keeping the program safe from code injection from even the most determined

attackers.

3.3.5 PC Confinement (PCC)

ISR provides diversity which prevents malicious code from being injected into the running

application, but an attacker may still be able to re-use code that is already in the application to

enact security violations, called an arc-injection attack [15 Indirect branches, such as function

calls via function pointers and function return instructions, are vulnerable to such an attack if the

branch’s data is overwritten with a buffer overflow, format string issue, or other program

weakness. Table 2 contains an example of a possible arc-injection attack.

Table 2: Example of arc-injection attack

void main(){

 auth = authenticate();

 vulnerable_code();

 if(auth) {

 send_secret_data();

 }

}

In the table, if the code in vulenerable_code() can overwrite the function’s return

address (or even just part of the function’s return address via a partial overwriting attack! [1]),

the return instruction can possibly jump anywhere in the program. It may jump to the system()

function to execute shell commands, or to the send_secret_data() call, to more steathily violate

the application’s security policy.

Kevlar's ILX feature can defeat many of these attacks by randomizing the application’s code.

However, Strata’s translation and sprocket execution code are at static locations, which may still

be targets of arc-injection attacks. Kevlar can protect all statically located code by employing PC

confinement (PCC). PCC is a type of program shepherding where indirect branches are

monitored and only allowed to transfer control to ILX-randomized code [11].

Kevlar’s static analysis identifies the location of valid indirect control transfers, and the run-

time environment efficiently monitors the execution of indirect branches. Indirect control flow is

only allowed if the destination is acceptable. Consequently, PCC and ILX can disallow control

transfers to unrandomized code, such as Strata’s sprocket execution code, thereby eliminating the

vast majority of arc-injection attacks.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 15

3.4 Technology Communication

As part of our approach to transitioning the Helix/Kelvar technology, we participated in a variety

of meetings, prepared various publications, and gave several presentations during this period.

Our most significant and visible communications are:

• We prepared two posters and handouts for the PACOM exercise in Hawaii. One poster

described the Helix/Kevlar technology. A second poster described the demonstration.

Handout versions of the posters were also created.

• Anh Nguyen-Tuong made a presentation at the Global Horizons Technical Exchange

Meeting held March 25â€“27, 2013 at Rome AFB.

• Dr. Jack W. Davidson travelled to Baltimore to see a GCCS demonstration by Northrup-

Grumman at the AFCEA International Cyber Symposium held June 25-27, 2013.

• We published a paper, A Framework for Creating Binary Rewriting Tools in European

Dependable Computer Conference, 2014.

• We published a paper, To B or not to B: Blessing OS Commands with Software DNA

Shotgun Sequencing in European Dependable Computer Conference, 2014.

• A student, Sudeep Ghosh, published his dissertation, Software Protection via Composable

Process-level Virtual Machines

• We published a paper, What’s the PointISA? in the Second ACM Workshop on

Information Hiding and Multimedia Security.

• We made a presentation of the Kevlar technology on September 6, 2013 at the United

States Patent and Trademark Office in Alexandria, Virginia at the invitation of the UVa’s

Vice-President of Research, Thomas Skalak. The presentation was made to a group of

venture capitalists and state government officials (including the Governor of Virginia).

• We submitted a provisional patent application called “Datameld”.

• Presentation and demonstration of Kevlar at the 2014 International Summer School on

Software Protection and Security held in Verona, Italy on July 27â€“August 1, 2014. See

http://issisp2014.di.univr.it/.

4.0 RESULTS AND DISCUSSION

We present out results (as indicated in the following subsections) for each 3 month period during

the project.

4.1 Period 1 – Feb. 2013 to May 2013

4.1.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. In conjunction with

PACOM contractors, we developed a demonstration of Kevlar for an exercise held in Hawaii in

early May (May 6–9, 2013). The demonstration was to protect an IRC Chat services component,

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 16

Anope, that is widely used by the U.S. government. We developed an attack against a vulnerable

Anope services module and demonstrated that the protected module was impervious to the attack.

We also provided protected versions of other software including ProFTPD (a FTP server),

Apache (web server), xpdf, and bzip2 (a commonly used compression utility), for a Red Team

Evaluation. We provided demonstration attacks against xpdf, bzip2, and dumbledore (a synthetic

application).

We worked with ReSurgo LLC and MIT Lincoln Labs to develop at test plan for evaluating

Kevlar. The result was a test plan document that described the proposed evaluation and the

metrics to be used for the exercise.

Sandia provided a report to PACOM and AFRL.

4.1.2 Technical Accomplishments this Period

The major technical accomplishment this period was the demonstration that Kevlar could easily

be applied to off-the-shelf binaries by end users (pushbutton protection).

We made improvements to our Strata Program Rewriting Interface (SPRI) to allow dynamic

randomization through a random starting address and random selection at load time of the SPRI

file to apply.

4.1.3 Improvements to Prototypes This Period

We continue to improve the performance, robustness, and coverage of Kevlar. For example, we

fixed some bugs that were exposed during testing. We also extended Kevlar to provide

protection to dynamically loaded libraries, to provide dynamic (i.e., moving target) capabilities

so each time an application is executed it presents a different attack surface to the adversary.

4.2 Period 2 – May 2013 to Aug. 2013

4.2.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. Our major goal for this

quarter was to take “lessons learned” from the PACOM exercise held in May and incorporate

them in the Kevlar roadmap. We have continued to work with MIT Lincoln Laboratories to

provide assistance as needed for their evaluation of Kevlar.

4.2.2 Technical Accomplishments this Period

The major technical accomplishments this period were to improve the readiness level of the 32-

bit Linux version of Kevlar and to layout the groundwork for a 64-bit Linux version. We also

investigated technical issues involved with porting Kevlar to a 32-bit Microsoft Windows

platform. Windows XP SP3 was the chosen target platform to evaluate and Visual Studio 2008

was used as the IDE. During this evaluation process it was determined that work effort would be

better spent on developing a 64-bit Windows port of Kevlar as the x86-64 Linux port would

serve as its foundation.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 17

4.2.3 Improvements to Prototypes This Period

We continue to improve the performance, robustness, and coverage of Kevlar. For example, we

fixed some bugs that were exposed while porting the code base to 64 bit. We have successfully

implemented a basic stratafier tool to inject the Strata VM into binaries. We have basic

implementation of the following Strata capabilities:

• basic translation for x86-64

• signal handling

• system call watching

• threading support

• fork support

• performance optimization

4.3 Period 3 – Aug. 2013 to Nov. 2013

4.3.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. We have successfully built

and configured Kevlar prototypes to armor binaries. We have used regression tests extensively to

validate that Kevlar-armored binaries retain the same operational semantics on known good input

data. We have also produced documentation and a turnkey â€œpush-buttonâ€ solution to easily

armor binaries.

4.3.2 Technical Accomplishments this Period

The major technical accomplishments this period are:

• Testing Kevlar using extensive regression test suites. The availability of test suite servers

not only to validate the Kevlar protection but also improves their precision.

• Further supporting the x86-64 architecture

• Work on porting Kevlar to 64-bit Microsoft Windows began. The targeted platform is

Windows 7 Enterprise and the IDE chosen is Microsoft Visual Studio 2012. The general

porting approach of iterative working models of increasing functionality was designed and

work on the straightforward porting tasks such as improving type safety in the Kevlar

source code was begun.

4.3.3 Improvements to Prototypes This Period

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64. These

include:

• Improved stability of the Strata Virtual Machine that is the core of Kevlar

• Improved stability of the stratafier tool

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 18

• Port of the Heap Randomization diversity transformation

• Port of the PC Confinement transformation

• Initiated port of the Instruction Location Randomization technique

• Initiated port of the base IRDB API

In addition we continue to fix bugs we encounter as part of the porting process to x86-64.

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions.

4.4 Period 4 – Nov. 2013 to Feb. 2014

4.4.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. We have started work

investigating the possibility of using Kevlar to protect the Global Command and Control System

(GCCS). One major task is understanding the GCCS system so that we can properly protect it.

Another major task has been to investigate the feasibility of using Kevlar on a Solaris operating

system. Another major task is to port Kevlar to Windows. We have made progress as the Kevlar

is now building (i.e., compiling and linking) on Windows. We are now starting the debugging

progress.

4.4.2 Technical Accomplishments this Period

The major technical accomplishments this period are:

• Improved Kevlar Testing on x86-64. We have been testing against the Gnome X11

window manager’s suite of applications. While bugs still exist, most programs can now be

"turn key" protected.

• Further supporting the x86-64 Linux architecture within Kevlar. Our stack randomization

protections are now working on this architecture.

• Achieved in-depth estimates of the work required to port Kevlar to x86-32 Solaris.

• Operating system - We have obtained a Solaris OS, and installed necessary build

tools such as gcc, nasm, libelf, postgres, etc.

• Strata - We have fixed many Solaris/Linux porting issues. Basic dynamic translation

support seems to work, however advanced support (signal handling, system call

watching, etc.) still needs significant additional work.

• Stratafier - We have fixed many Solaris/Linux porting issues, and the Stratafication

process seems to work on one example. Additional testing is needed.

• IRDB interfaces - While we have fixed many porting issues, building is still a

challenge due to compiler compatibility issues. We anticipate these can be resolved

with moderate effort.

• IDA Pro/STARS - One of the main analysis engines of Kevlar is incompatible with

Solaris, and cannot reasonably be ported due to the commercial nature of IDA Pro.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 19

However, we have investigated using a Linux machine to act as a analysis server for

Solaris binaries. This seems reasonable, however architecting and implementing the

server will require moderate to significant effort.

• Significant work on a x86-32 Solaris port has been achieved, but the first working

prototype is still unavailable.

• We are now able to successfully build Strata on a 64-bit Windows platform using Visual

Studio. We are now in the process of debugging the code.

4.4.3 Improvements to Prototypes This Period

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64. These

include:

• Improved stability of the Strata Virtual Machine that is the core of Kevlar.

• Improved stability and applicability of the Stratafier tool, which now supports Stratfication

of executable shared objects.

• Port of the Stack Randomization diversity transformation

• Finished port of the Instruction Location Randomization technique, which includes

robustness enhancements for both x86-32 and x86-64.

• Finished port of the base IRDB API

In addition we continue to fix bugs we encounter as part of the porting process to x86-64.

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions.

4.5 Period 5 – Feb. 2014 to May 2014

4.5.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. We have continued work

investigating the possibility of using Kevlar to protect the Global Command and Control System

(GCCS). In this period, we made substantial progress as AFRL and Northrup Grumman visited

our lab in April to demonstrate the operation of GCCS (in a previous visit by North Grumman,

they were not able to demonstrate GCCS because of a configuration problem). We also made

substantial progress in modifying Kevlar so it handled x86-64 binaries on Ubuntu (a first goal

before moving to x86-64 on Solaris) In addition, substantial progress was made on porting

Kevlar to the Windows 8 platform, as we were able to run simple Windows programs under

control of the protective virtual machine, Strata.

4.5.2 Technical Accomplishments this Period

The major technical accomplishments this period are:

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 20

• Significant refinements and testing on x86-64 Ubuntu platform. All major protections are

enabled and work on very large programs. While bugs still exist, most programs can now

be "turn key" protected using all Kevlar protections, including ISR and ILR.

• Started work on Kevlar porting to x86-32 Solaris for GCCS system.

• Operating system - We have been able to install necessary tools (such as gcc, nasm,

libelf, postgres, etc.) on a GCCS system.

• Strata - We have fixed many Solaris/Linux porting issues. Basic dynamic translation

support is complete, and advanced support (signal handling, system call watching,

etc.) has received significant effort. Most Strata facilities now work correctly on

Solaris.

• Stratafier - We have done additional testing on the Stratafier and found several

fundamental issues that prevent the current Stratafier mechanism from being

effective and operational. We have redesigned and begun implementation of a

Solaris-compatible mechanism.

• PC-Confinement - A first working version of PC confinement on solaris has been

achieved.

• IRDB interfaces - While we have fixed many porting issues, building was still a

challenge due to compiler compatibility issues. To solve this issue, we obtained and

installed the SUNSwpro compiler. This has resolved many the compilation issues in

the IRDB interface, but some issues continue to remain.

• Significant work on a x86-32 Solaris port has been achieved, and we have a partially

working prototype. Before a full release is available, archiving is necessary.

• We are now able to successfully run simple (non-threaded) programs under control of

Strata of x86-64 Windows 8 platforms..

4.5.3 Improvements to Prototypes This Period

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64 Ubuntu

and x86-32 Solaris. These include:

• Improved stability and performance of the Strata Virtual Machine that is the core of

Kevlar.

• Redesign of the Stratafier component for x86-32 Solaris.

• Port of all Kevlar protections to x86-64 Ubuntu.

• Adapting Kevlar for x86-64 Windows 8. Simple (single thread) programs can now run

reliably under control of Strata

In addition we continue to fix bugs we encounter as part of the porting process to x86-64.

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 21

4.6 Period 6 – May 2014 to Aug. 2014

4.6.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. We have continued work

investigating the possibility of using Kevlar to protect the Global Command and Control System

(GCCS). We are now able to apply some of the Kevlar protections to Solaris executables. The

Windows port is coming along. After getting the first version working, we refactored the code so

that fit into the overall software architecture in a clean, easy to maintain way.

4.6.2 Technical Accomplishments this Period

The major technical accomplishments this period are:

• Significant refinements and testing on x86-32 Solaris platform. Many major protections

are enabled and work on some mid-sized programs, such as bzip2, gedit, etc. While bugs

still exist, these programs can now be "turn key" protected using most Kevlar protections,

including ISR and ILR.

• We have continued work on Kevlar porting to x86-32 Solaris for GCCS system.

• Strata - We have fixed most Solaris/Linux porting issues. Basic dynamic translation

support and advanced support (signal handling, system call watching, etc.) is

complete. All relevant Strata facilities now operate correctly on most Solaris

programs.

• Stratafier - We have finished the redesigned and made progress on an

implementation of a Solaris-compatible mechanism. Stratafication of most programs

is not possible on Solaris, but further testing is required.

• ISR - A first working version of ISR, complete with metamorphic shield rekeying,

has been achieved on Solaris.

• IRDB interfaces - The SUNSwpro compiler has resolved many of the compilation

issues in the IRDB interface. However, some issues remained. We have resolved

many porting issues, and the IRDB interfaces are working for many programs.

Further testing and debugging remain necessary.

• Significant work on a x86-32 Solaris port has been achieved, and we have a working

prototype that includes many Kevlar defenses.

• We are now working to understand threading on Windows so the relevant Strata code can

be adapted appropriately.

• We have further protected a binary from the GCCS system, further testing on GCCS

remains.

4.6.3 Improvements to Prototypes This Period

We have made numerous improvements to the Kevlar toolchain, in particular for x86-32 Solaris.

These include:

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 22

• Redesign and Reimplementation of the Stratafier component for x86-32 Solaris.

• Port of many Kevlar protections, including ISR and PC-Confinement to x86-32 Solaris.

• First functional prototype of Kevlar for x86-32 Solaris.

In addition we continue to fix bugs we encounter as part of the porting process to x86-64.

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions.

4.7 Period 7 – Aug. 2014 to Nov. 2014

4.7.1 Progress Against Planned Objectives

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix

technology developed under contract FA8650-10-C-7025 and others. We have continued work

investigating the possibility of using Kevlar to protect the Global Command and Control System

(GCCS). We are now able to apply many of the Kevlar protections to Solaris executables. We

have protected two GCCS executables from the track management system (TMS). We the

protected executables to AFRL for evaluation. We have also protected many other executables in

GCCS, and tested them internally. All seem to function properly. We have also advanced the

Windows port of the basic Kevlar.

4.7.2 Technical Accomplishments this Period

The major technical accomplishments this period are:

• Significant refinements and testing on x86-32 Solaris platform. Most major protections are

enabled and work on some mid-sized and large-sized programs, such as bzip2, gedit,

gnome-terminal, etc. Most programs can now be "turn key" protected using most Kevlar

protections, including ISR and ILR.

• We have continued work on Kevlar porting to x86-32 Solaris for GCCS system, and have

succeeded in protecting many of the TMS programs.

• We are achieved success on handling threaded applications on the Windows OS.

• We are now working to understand exception handling on Windows so the relevant Strata

code can be adapted appropriately.

4.7.3 Improvements to Prototypes This Period

We have made numerous improvements to the Kevlar toolchain, in particular for x86-32 Solaris.

These include:

• Porting of several IRDB faciltiies, including fast spri and preLoadedILR to improve

loading times.

• Port of many Kevlar protections, including final porting of the ILR transformation.

• First fully functional prototype of Kevlar for x86-32 Solaris.

In addition we continue to fix bugs we encounter as part of the porting process to x86-64.

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 23

4.8 Results Discussion

During the many periods of this project we have done much to understand and promote the

possible transition of Helix/Kevlar. First, various meetings, publications and presentations have

helped us connect with possible transition partners and taught us the constraints customers may

have for a transitionable technology. Our porting to Windows and Solaris platforms has helped

us both gain an deeper understanding these issues and constraints, as well as made our prototype

technology more attractive to potential partners. We have learned much, namely that different

operating systems have different default compilers, which can provide significant challenges to a

tool that works on the compiler’s output (a binary program). In particular, some of our Linux-

based tools assumed a particular calling convention, and different systems use different calling

conventions. Abstracting the calling convention as much as possible eases technology transition.

5.0 CONCLUSIONS

Security weaknesses in DoD information systems remain a major challenge for system

stakeholders. We have advanced the transition of technology developed under the Helix and

PEASOUP projects to protect Air Force systems of interests. The result are expected to be an

asset that, if widely deployed by the DoD, would enable a high level of confidence in the

security of DoD systems, in particular, confidence that certain classes of critical vulnerabilities

were no longer subject to possible exploitation.

We have leveraged the opportunity to take the Helix architecture one step closer to

deployment in real systems by developing Kevlar, a completely automatic system for securing

applications against attack by well-funded, determined malicious adversaries. Kevlar armors

binary programs and protects them from attacks which could arise from the inevitable

vulnerabilities that remain after deployment. The source code is not required nor are any other

development artifacts. These features make Kevlar of particular value for software systems that

have to be used but for which no development information is available.

During this project we have done much to understand and promote the possible transition of

Helix/Kevlar. First, various meetings, publications and presentations have helped us connect

with possible transition partners and taught us the constraints customers may have for a

transitionable technology. Our porting to Windows and Solaris platforms has helped us both gain

an deeper understanding these issues and constraints, as well as made our prototype technology

more attractive to potential partners. We have learned much, namely that different operating

systems have different default compilers, which can provide significant challenges to a tool that

works on the compiler’s output (a binary program). In particular, some of our Linux-based tools

assumed a particular calling convention, and different systems use different calling conventions.

Abstracting the calling convention as much as possible eases technology transition.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 24

6.0 REFERENCES

1. S. Alexander. Defeating compiler-level buffer overflow protection. J-LOGIN, 30(3):59–71,

2005.

2. Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for adaptive

dynamic optimization. In Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO ’03, pages 265–275,

Washington, DC, USA, 2003. IEEE Computer Society.

3. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems, 13:451–490, October 1991.

4. Tyler Durden. Bypassing PaX ASLR protection. Phrack Magazine, 0x0b(0x3b), 2002.

5. H. Etoh. GCC extension for protecting applications from stack-smashing attacks

(ProPolice), 2003.

6. Hex-Rays. IDA Pro. http://www.hex-

rays.com/products/ida/index.shtml.

7. Jason Hiser, Clark L. Coleman, Michele Co, and Jack W. Davidson. MEDS: The memory

error detection system. In Fabio Massacci, Samuel T. Redwine Jr., and Nicola Zannone,

editors, Proceedings of the First International Symposium on Engineering Secure Software

and Systems ESSoS, volume 5429 of Lecture Notes in Computer Science, pages 164–179.

Springer, 2009.

8. Jason D. Hiser, Anh Nguyen-Tuong, Michele Co, Jack W. Davidson, and Matthew Hall.

ILR: Where’d my gadgets go? IEEE Symposium on Security & Privacy, pages 571–585,

May 2012.

9. Wei Hu, Jason Hiser, Daniel Williams, Adrian Filipi, Jack W. Davidson, David Evans,

John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure and practical defense

against code-injection attacks using software dynamic translation. In Proceedings of the

Second International Conference on Virtual Execution Environments, pages 2–12, Ottawa,

Canada, June 2006. ACM Press.

10. Wei Hu, Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W. Davidson, David Evans,

John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure and practical defense

against code-injection attacks using software dynamic translation. In Proceedings of the 2nd

International Conference on Virtual Execution Environments, pages 2–12. ACM Press New

York, NY, USA, 2006.

11. Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via

program shepherding. In Eleventh USENIX Security Symposium, august 2002.

12. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized

program analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’05,

pages 190–200, New York, NY, USA, 2005. ACM.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 25

13. A. Nguyen-Tuong, A. Wang, J.D. Hiser, J.C. Knight, and J.W. Davidson. On the

effectiveness of the metamorphic shield. In Proceedings of the Fourth European Conference

on Software Architecture: Companion Volume, pages 170–174. ACM, 2010.

14. Mathias Payer and Thomas R. Gross. Generating low-overhead dynamic binary translators.

In Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR ’10,

pages 22:1–22:14, New York, NY, USA, 2010. ACM.

15. J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting buffer

overruns. Security & Privacy, IEEE, 2(4):20–27, 2004.

16. Benjamin Rodes, Anh Nguyen-Tuong, Jason D. Hiser, John C. Knight, Jack W. Davidson,

and Michele Co. Against stack-based attacks using speculative stack layout transformation.

In Proceedings of the Third International Conference on Runtime Verification, RV’12,

pages 308–313, Berlin, Heidelberg, September 2012. Springer-Verlag.

17. G.F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to randomized

lib (c). In 2009 Annual Computer Security Applications Conference, pages 60–69. IEEE,

2009.

18. B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited. In

WCRE ’02: Proceedings of the Ninth Working Conference on Reverse Engineering, pages

45–54, 2002.

19. K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa.

Retargetable and reconfigurable software dynamic translation. In CGO ’03: Proceedings of

the International Symposium on Code Generation and Optimization, pages 36–47,

Washington, DC, USA, 2003. IEEE Computer Society.

20. Kevin Scott and Jack Davidson. Strata: A software dynamic translation infrastructure. In

IEEE Workshop on Binary Translation, September 2001.

21. Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan

Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th

ACM Conference on Computer and Communications Security, CCS ’04, pages 298–307,

New York, NY, USA, 2004. ACM.

22. Swaroop Sridhar, Jonathan S. Shapiro, and Prashanth P. Bungale. HDTrans: a low-overhead

dynamic translator. SIGARCH Computer Architecture News, 35:135–140, March 2007.

23. Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2nd edition, 2011.

24. Daniel. Williams, Wei Hu, Jack W. Davidson, Jason D. Hiser, John C. Knight, and Anh

Nguyen-Tuong. Security through diversity: Leveraging virtual machine technology. IEEE

Security & Privacy, 7(1):26–33, Jan.-Feb. 2009.

25. Jun Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime randomization for security. In

Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pages

260–269, oct. 2003.

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

 26

6.1 List of Acronyms

 ASLR - Address Space Layout Randomization

 AIR - Application Information Repository

 BED - Behavior Equivalence Detection

 DARPA - Defense Advanced Research Projects Agency

 DoD - Department of Defense

 GCCS - Global Command and Control System

 HLT/HLX - Heap Layout Transformation

 IARPA - Intelligence Advanced Research Projects Agency

 ILT/ILX - Instruction Location Transformation

 IR - Intermediate Representation

 IRDB - Intermediate Representation Database

 NSF - National Science Foundation

 SDT - Software Dynamic Translator

 SPRI - Sprocket Program Rewriting Interface

 STARS - Static Analyzer for Reliability and Security

 SSA - Static Single Assignment

 TMS - Track Management System

 TRL - Technical Readiness Level

 TSET - Test Suite Evaluation Technology

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED

